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ABSTRACT

The field of nutritional epidemiology faces challenges posed by measurement error, diet as a complex exposure, and residual confounding. The
objective of this perspective article is to highlight how developments in big data and machine learning can help address these challenges. New
methods of collecting 24-h dietary recalls and recording diet could enable larger samples and more repeated measures to increase statistical power
and measurement precision. In addition, use of machine learning to automatically classify pictures of food could become a useful complimentary
method to help improve precision and validity of dietary measurements. Diet is complex due to thousands of different foods that are consumed
in varying proportions, fluctuating quantities over time, and differing combinations. Current dietary pattern methods may not integrate sufficient
dietary variation, and most traditional modeling approaches have limited incorporation of interactions and nonlinearity. Machine learning could
help better model diet as a complex exposure with nonadditive and nonlinear associations. Last, novel big data sources could help avoid
unmeasured confounding by offering more covariates, including both omics and features derived from unstructured data with machine learning
methods. These opportunities notwithstanding, application of big data and machine learning must be approached cautiously to ensure quality
of dietary measurements, avoid overfitting, and confirm accurate interpretations. Greater use of machine learning and big data would also require
substantial investments in training, collaborations, and computing infrastructure. Overall, we propose that judicious application of big data and
machine learning in nutrition science could offer new means of dietary measurement, more tools to model the complexity of diet and its relations
with diseases, and additional potential ways of addressing confounding. Adv Nutr 2021;12:621–631.
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Introduction
Suboptimal diet recently surpassed smoking as the leading
risk factor for noncommunicable disease morbidity and
mortality in the Global Burden of Disease Study (1).
Therefore, ongoing efforts to improve knowledge of diet’s
effects on health must be a top priority in efforts to improve
public health. Much progress in understanding diet has been
made in the past half-century, with scientific findings in
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nutritional epidemiology leading to policy changes such as
trans-fat bans in many countries (2). Despite much progress,
challenges remain, including substantial barriers to accurate
and precise measurement of diet (3, 4), appropriately
modeling the complexity of diet (5, 6), and multicollinearity
and residual confounding (7). The objective of this article
is to review how the application of big data sets and
machine learning may help address challenges in nutritional
epidemiology, with a focus on measurement error, dietary
complexity, confounding, disease prediction, and inferential
studies. First, we define big data and machine learning with
respect to nutritional epidemiology, and then we review
five specific topics: measurement error, dietary complexity,
confounding, disease prediction, and inferential studies
(Table 1).

Big Data and Machine Learning
“Big data” refers to data sets that usually include both
many observations and many variables, making the use of
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TABLE 1 Summary of major potential applications of big data and machine learning to nutritional epidemiology

Measurement error Dietary complexity Confounding Disease prediction Inferential studies

Potential big data and
machine learning
applications

New measurement
methods

Frequent repeated
measures

Increased statistical
power

Increased precision
Decreased regression

dilution bias

Including more
complex and
comprehensive
dietary exposures

Improved modeling of
interactions and
nonlinearity

New data sources
could reduce
unmeasured
confounding

Greater opportunities
for use of negative
controls and
instrumental
variables

Machine learning
methods applied in
inferential
frameworks

Improved disease
predictions with
greater
incorporation of
complex dietary
exposures,
nonlinearity, and
interactions in
predictive models

Less biased estimation
of causal effects

Hypothesis generation
with methods for
interpreting
machine learning
models

Limitations Evaluation of the
validity and
precision of new
measurement
methods is in early
stages

Many proposed
methods still rely on
self-report

Selection bias
Investments in big data

infrastructure and
expertise would be
needed

Privacy concerns must
be addressed

Limited interpretability
of unsupervised and
supervised machine
learning methods

High sample sizes
needed to reliably
model nonadditive
and nonlinear
relations

Potential for limited
interpretability of
machine
learning–derived
covariates

Potential for worsening
model bias and
variance if there is
data-driven
inclusion of
covariates in models

Potential for overfitting
Limited interpretability

of models
Careful validation

required to ensure
reliable predictions

May not enhance
performance relative
to traditional models
(e.g., if interactions
and nonlinearity are
not very important)

Potential for inaccurate
data-driven
conclusions

Interpretability of
machine learning
models remains
limited

traditional statistical methods difficult (8). As a result, there
is often a need for more flexible modeling than provided
for in classical statistical analysis. The specific size of data
sets required to constitute big data varies depending on
the context. Generally, it has been characterized by the
“three V’s,” which include the data’s volume, velocity, and
variety (9). Big data sets are also often less structured than
traditionally collected data, and they may be a byproduct
of something, rather than an intentionally collected sample
(10). Big data has risen alongside exponential improvement
and expansion of computing devices and data storage
capacity. Health researchers have begun to leverage new
sources of big data, from both primary and secondary
sources, such as electronic health records and social media.
In addition, researchers now work with big data arising from
the investigation of complex biological systems such as the
genome and microbiome (11).

Machine learning is a subfield of artificial intelligence,
which encompasses a wide range of approaches that seek
to provide computers with the ability to learn tasks without
being explicitly programmed (12). These approaches rely
on algorithms that derive patterns from data with little
human input (13). This contrasts with statistical techniques
that rely more on human knowledge for verification of
model assumptions and variable selection (14). Statistical
techniques also emphasize a theoretical approach to

hypothesis testing and uncertainty estimation, which is
not common in machine learning. Machine learning is often
applied to big data, where it is sometimes difficult to apply
conventional statistical approaches.

Machine learning can be broadly classified into super-
vised and unsupervised approaches (15). For supervised
approaches, an example data set including complete label or
outcome information is used by a learning algorithm to iden-
tify patterns in the explanatory variables. The trained model
is then applied to make predictions on new data. In contrast,
for unsupervised approaches, there are no human-supplied
examples for the observations in a data set, and the algorithm
searches for latent patterns or groupings (16). Subsets of un-
supervised approaches include dimensionality reduction and
clustering (15). An additional subfield of machine learning
is feature selection, which aims to remove variables that are
less relevant to outcome prediction in supervised problems
(17). In health research, machine learning has been applied to
the analysis of genome- and microbiome-derived data, where
conventional analyses are limited by high dimensionality (17)
and there is limited mechanistic understanding or theory
to guide analysis. Several comprehensive review articles
relating big data and machine learning to epidemiology
and public health provide greater detail on both topics, but
nutritional epidemiology has not yet been discussed in detail
(18, 19).
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Current and Potential Applications of Big Data
and Machine Learning in Nutritional
Epidemiology
Measurement error
Description.
Diet is a difficult exposure to measure accurately and
precisely. Common methods of dietary assessment widely
used in large observational studies are FFQs, 24-h dietary
recalls, and biomarkers (2, 20). Each method has its own
strengths and limitations and is subject to both random and
systematic error to various degrees (21). These measurement
methods are often complementary, such as the use of
biomarkers to calibrate self-report instruments. Overall,
significant progress has been made in the measurement of
nutrition, but there is still substantial room for improvement
(20). Some sources of error are thought to be nondifferential
with respect to outcomes (2); however, this still presents
significant problems. Nondifferential measurement error
often leads to a diminution of nutrients’ associations with
health outcomes, but not always (7, 22). Nondifferential
measurement error also results in a loss of statistical power
(23, 24). Furthermore, nondifferential measurement error
can sometimes result in exaggeration of associations between
diet and disease when the assumptions of the classical
model of measurement error are not met (e.g., lack of
error in covariates) (25, 26). This has been highlighted as
limiting reproducibility in other fields (26). Last, differential
measurement error, when it exists, could compromise the
internal validity of studies.

Using big data to improve measurement methods.
Big data related to nutrition are now generated through mul-
tiple means. These data may lead to reduced measurement
error in nutritional epidemiology through the provision
of more objective, scalable, and affordable means of data
collection. The ubiquity of internet-connected computers
and smartphones opens many new means of active data
collection. In addition, increased big data repositories such
as those in consumer rewards programs and diet-tracking
applications offer opportunities for the use of secondary
dietary data. In many cases, these new data sources entail self-
report and have many similar limitations to FFQs and 24-h
dietary recalls. Their main value could stem from increased
scalability and corresponding improvements in statistical
power. New electronic measurement modalities may also
facilitate more longitudinal, repeated dietary measurements,
assuming these tools are less expensive and burdensome than
traditional methods. With repeated measurements, dietary
variables can be more precise and regression dilution bias
can be reduced. For example, 4 repeated 24-h dietary recalls
were shown to improve attenuation factors of protein for men
and women from 0.32–0.40 with an FFQ to 0.40–0.50 (27).
Also, more detailed dietary instruments have been found to
reduce bias toward the null relative to FFQs (28–30), and
these types of instruments could become more feasible using
electronic measurement methods. Therefore, new means

of electronic data collection could help improve statistical
power by increasing sample sizes, while also potentially
improving measurement precision by enabling repeated and
more detailed measures.

There has been some validation of automated, electronic
dietary measurement modalities. For example, the Web-
based Automated Self-Administered 24-Hour Dietary As-
sessment Tool (ASA24) captures 24-h recalls without the
time and expense required by trained interviewers (19);
however, there is a significant burden of collection on the
respondent, who may not be willing. The ASA24 performed
similarly to an interviewer-administered 24-h dietary recall,
with 80% of foods classified correctly compared with 83%
and no difference in bias (31). Other Web-based, self-
administered 24-h dietary recalls have also been shown
to have good agreement with interviewer-administered
24-h dietary recalls and other reference measures (i.e.,
correlation coefficients of 0.4–0.5 between Web-based recalls
and biomarkers and 0.3–0.9 compared with interviewer-
administered recalls) (32–34). Less user-burdensome elec-
tronic dietary measurement methods include the large and
detailed grocery purchase habits of populations generated
by consumer rewards programs and the eating patterns
already recorded in smartphone tracking applications. Gro-
cery purchase data have been useful for ecological studies
(35). There has been less validation of purchasing data for
individual-level consumption, but 1 study found that the use
of household food purchase data had moderate agreement
with interviewer-administered 24-h dietary recalls (con-
cordance correlation of 0.57) and showed little bias (36).
Smartphone-based dietary records have also been evaluated.
For example, MyFitnessPal had correlations with measured
food inventories ranging from 0.963 to 0.999 in a small
study; however, other similar measurement methods had
correlations with reference measurements that varied widely
from 0.16 to 0.82 (37–39). Importantly, existing smartphone
applications have been found to score well for usability
(40). Overall, early assessments of new electronic dietary
measurement methods are promising.

Completely new means of dietary measurement enabled
by machine learning and modern data infrastructures could
improve both scalability and precision. Machine learning
models can be used to automatically classify pictures of
food (41–46). Such techniques may facilitate less effortful,
more regular, and more accurate diet records, improving
both precision and validity. This has been an active area
of research, showing rapid improvement (47), but advances
in both the algorithms used and the size of fully annotated
training data sets are needed to improve performance (45,
48, 49). Most published research focuses on categorizing
individual foods, achieving accuracies ranging from 50%
to 90%. More recently, a larger data set with full recipe
information was used to identify multiple foods and in-
gredients in a single photograph with 65% accuracy, which
was similar to human-level performance (50). Another
problem is accurately estimating food volumes to obtain
accurate absolute energy and nutrient estimates, with current
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approaches having reported error rates of 10–50% (49). For
example, 1 deep learning–based study estimated energy with
an average error of 209 kcal per eating occasion (51). New
ways of improving accuracy are being explored, such as using
location data to correlate images with nutritional information
in online restaurant menus (52) and relating home-prepared
foods to online recipe databases (45, 49). If combined
with grocery purchase data, accuracy of image-based food
records could also be improved through restricting analyses
based on known purchases. Despite many limitations with
modern deep learning–based food analysis systems, private
companies (44) and government health promotion programs
(43) have begun to make use of them. These methods
may prove most useful in combination with participants’
self-report. Deep learning–based image classification could
derive much of the dietary information while incorporating
other contextual data and then target specific questions
for clarification from the respondent. Alternatively, images
and natural language relating to diet can be obtained from
social media and Web search platforms, which often include
integrated food and health-related information (53). Existing
studies using dietary data from social media are primarily
ecological and have successfully linked derived dietary
features to community-level health outcomes and aspects
of the built environment (45, 54). With new data collec-
tion modalities enabled by machine learning, observational
studies could be rapidly scaled either passively or through
dissemination of relevant applications, potentially increasing
statistical power, measurement precision, and accuracy.

Limitations of new measurement methods.
New dietary measurement tools using big data infrastruc-
tures and machine learning techniques must be rigorously
evaluated to determine their validity and precision. Larger
cohorts facilitated by new data collection methods could
improve statistical power, but only if they are sufficiently
precise. Furthermore, improved statistical power alone will
not alleviate regression dilution bias (7, 22). Overall, many
of the same limitations faced with FFQs and 24-h dietary
recalls could be expected, with improved scalability and more
repeated measures being the major potential benefits. The
validity of novel measurement methods is also a concern. For
example, passive records from social media and grocery store
purchases will likely not be comprehensive nor representative
of true dietary consumption. Also, it may be some time before
deep learning classification of food achieves practically useful
levels of accuracy for nutritional epidemiologic studies.
Initial results have been promising, but this requires much
more investigation (45, 48, 49). In addition, studies using
new means of both passive and active dietary measurement
would need to be carefully assessed for impacts on selection
bias, which would likely be exacerbated compared with
usual research practice (55). Another practical limitation
that could hinder application of new dietary measurement
modalities, even if valid and precise, is the expertise and
investment required for their development and implemen-
tation (56). Enrolling hundreds of thousands or millions of

participants would require nontrivial database management
expertise and infrastructure. In addition, skills in the use
of machine learning, as well as access to high-performance
computing, would need to be acquired in many cases. These
obstacles could be overcome through collaborations and
large investments in training and infrastructure, but these
may not be practical for much research. Finally, many of
these approaches entail major privacy concerns. Careful,
collaborative work will be needed to ensure research projects
involving these data are ethical, collect only strictly necessary
information, and that security is sufficiently robust to ensure
that other parties (e.g., insurance companies) cannot access
the data.

Modeling the complexity of diet
Description.
Diet is a complex exposure, which makes defining exposure
variables and specifying models challenging. Foods are not
consumed in isolation but, rather, in varying combinations
and proportions. If 1 item is reduced or increased, other
parts of the diet must change correspondingly to meet overall
energy needs. In addition, nutrients and foods can interact
with one another in synergistic and antagonistic ways,
making the “whole” very different from the sum of its parts
(5, 6). Given this complexity, approaches to modeling diet can
focus on individual nutrients, foods, food groups, or dietary
patterns. Current dietary patterns are often based on a priori
knowledge of important aspects of diet and condensed into
1-dimensional measures, such as the Mediterranean Diet
Score (MDS) (57), (alternative) Healthy Eating Index (AHEI)
(58, 59), or Dietary Approaches to Stop Hypertension
(DASH) score (60). When condensed into unidimensional
scores, the multidimensional character of dietary patterns is
lost. These dietary patterns can account for some synergy, but
only when interactions are known and accounted for during
score construction. Such interactions are rarely known (5,
6, 61). Furthermore, in studies of nutrients, foods, and
food groups, interactions are often implicitly assumed to
be absent in model specification (61). Interactions could
be included in parametric models, but only if known
a priori. Finally, many nutritional epidemiologic studies
assume linear models of associations between diet and
disease (61). There is emerging evidence that nonlinear
relations may be more common than previously thought. For
example, salt (62), carbohydrate (63), and fats (64) may all
have U- or J-shaped relations with cardiovascular diseases.
In addition, there is support for various interactions in
nutritional epidemiology. For instance, the impact of salt on
hypertension seems to be moderated by the potassium and
simple carbohydrate content of the diet (65–67). Improper
specification of models due to erroneous or incomplete
exposure characterizations, assumptions regarding interac-
tions, and/or assumptions regarding linearity can lead to
masked or spurious associations and biased effect estimates
(61, 68–70).
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Machine learning methods to model the complexity of diet
in relation to disease.
Machine learning could afford inclusion of more complex
and more numerous dietary explanatory variables in nu-
tritional epidemiologic models and help identify the most
predictive ones empirically (71). Many dimensionality re-
duction techniques are already often used in nutritional epi-
demiology, such as principal component analysis (PCA) (72),
k-means clustering (73), and partial least-squares regression
(74). Except for k-means clustering, linear dimensionality
reduction methods such as these are used in both machine
learning and classical statistical analysis. However, there
has been less use of nonlinear dimensionality reduction
methods in nutritional epidemiology, such as autoencoders,
t-distributed stochastic neighbor embedding, and manifold
learning (75). Although such approaches may create more
representative and comprehensive dietary patterns, they are
also likely to suffer from even poorer interpretability than
linear dimensionality reduction methods. Corresponding
approaches are being developed to improve interpretability
of the resulting dimensions (75, 76).

Feature selection methods are another means of address-
ing dietary complexity. These methods can restrict rich
dietary data to a subset more relevant for prediction of
the health outcome of interest. Again, there has been some
use of these methods in nutritional epidemiology already,
such as the use of least absolute shrinkage and selection
operator, which was found to better predict cardiometabolic
indicators with dietary data compared with traditional
methods (77). Other common feature selection algorithms,
such as regularized trees, genetic algorithms, and recursive
feature elimination, have been used less. In addition, there
has been little use of machine learning to analyze multiple
levels of food classification simultaneously, such as micro-
and macronutrient content, specific food types, and food
groups. This could allow the most predictive aspects of diet
to be determined empirically for a given problem, which was
called for in a recent commentary (3). We are aware of 1 study
that applied survival gradient boosted machines and survival
random forests to predict cardiovascular mortality with
NHANES dietary data (that included multilevel dietary data)
(78). These models showed improved predictive calibration
and discrimination when including all 103 dietary variables
on top of traditional clinical predictors. When the only added
dietary variables were a priori dietary scores (MDS, Healthy
Eating Index, AHEI, and DASH), there was no performance
improvement. Overall, although initial applications appear
promising, the use of machine learning in the context of high-
dimensional, rich dietary data is not without caution. With
no initial expert curation of variables and careful validation,
important predictors could be missed and unimportant
predictors incorrectly emphasized.

In addition to better capturing the richness of nutrition,
machine learning can model nonlinear and nonadditive
relations more flexibly. In addition, these relations do not
need to be known a priori. Although limited, there are some
studies that have applied machine learning to more flexibly

model diet–health relations. For example, a stochastic gra-
dient boosting regression algorithm was used to accurately
predict individual glycemic responses to food with detailed
dietary, lifestyle, medical, laboratory, anthropometric, and
microbiota data (79). The model included thousands of vari-
ables and used permutation feature importance and partial
dependence plots to interpret their contributions to predic-
tions. Unexpectedly, the model placed greater emphasis on
microbiota-related variables. This study was unique among
nutrition studies in using a surrogate outcome with low
latency and having unusually precise dietary measurements.
Another more typical nutritional epidemiologic cohort study
found a 22% increase in the accuracy of cardiometabolic
risk factor prediction when comparing random forest (a
machine learning algorithm) to linear regression (80). This
study incorporated rich dietary independent variables and
used PCA for dimensionality reduction. Another recent
study examined the associations between diet and adverse
pregnancy outcomes using Super Learner (an ensemble
machine learning algorithm) for targeted maximum like-
lihood estimation, compared with logistic regression (61).
There were predominantly null associations in the logistic
regression model. Conversely, the machine learning model
demonstrated protective associations between vegetable and
fruit intake and preterm births, small-for-gestational-age
births, and pre-eclampsia outcomes, in addition to more
precise estimates. The authors attributed this difference
between the machine learning method and logistic regression
to improved modeling of dietary synergy in the machine
learning model. Last, the previously discussed study that
used machine learning models to predict cardiovascular
mortality with NHANES nutrition data showed improved
predictive calibration and discrimination compared with
Cox proportional hazards models (78). Interestingly, addi-
tion of nutrition data to the statistical model did not improve
its predictive discrimination or calibration, but when the
data were added to the machine learning models, both
measures improved. This lends support to the proposition
that machine learning models may better leverage the full
richness of diet in modeling health outcomes, perhaps both
by incorporation of more dietary variables and by accounting
for nonlinear and nonadditive relations.

Residual confounding and multicollinearity
Description.
Residual confounding and multicollinearity can limit inter-
pretability of nutritional epidemiologic studies. Nutrients
and foods are often strongly correlated with one another
and also with other important determinants of health (7).
These dense correlations can make it difficult to ascertain
the most relevant dietary exposure and to confidently
address residual confounding. Residual confounding can be
addressed by using a priori knowledge to specify confounders
in models (81). However, it is impossible to guarantee the
absence of residual confounding in observational studies. In
addition, even when confounders are appropriately included
in models, residual confounding can remain if measurement
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error or unspecified nonadditivity/nonlinearity are present.
Multicollinearity can be partially addressed through the
use of dietary patterns and a posteriori dimensionality
reduction methods, such as factor analysis (82). However,
such methods may not encapsulate all important dietary
variation, may be difficult to interpret, and may obfuscate
attempts to better understand more granular aspects of diet.
Overall, both residual confounding and multicollinearity can
make it challenging to draw valid inferences. These issues
are also strongly related to dietary measurement and model
specification because both nondifferential measurement er-
ror and inappropriate modeling can exacerbate problems
with multicollinearity and residual confounding (25, 83).

New tools to address confounding.
Incorporating data with both higher numbers of obser-
vations and more available variables into nutritional epi-
demiologic studies, alongside machine learning analytical
techniques, could possibly reduce residual confounding. It is
important to highlight that there has been less application
of machine learning in studies providing evidence for
causal effects, in which confounding is relevant (55), and
that this is distinct from predictive modeling, in which
machine learning has been applied more often (84). However,
in addition to careful application of domain knowledge,
potential opportunities include a higher chance of avoiding
unmeasured confounding with higher dimensionality; using
machine learning to include novel types of unstructured
data; leveraging higher dimensionality for greater use of
negative controls and instrumental variables (55); and
using new machine learning methods to help control for
confounding with high-dimensional data, applied within
causal frameworks. Big data sets including variables related to
microbiota, genetics, metabolomics, lifestyle, environment,
and social determinants of health could enhance analyses
by helping avoid missing unmeasured confounders (85).
Furthermore, machine learning can make entirely new types
of data available for inclusion in models. For example, deep
learning has been used to derive variables describing the
built environment from satellite images (86). Further big
data types that could be considered include medical infor-
mation from free-text clinical notes (87); physiological data
from wearable devices (88); and populations’ demographic,
socioeconomic, and health records from linked government
data sets (89). Another potential advantage of incorporating
big data is the greater availability of negative controls.
Negative control outcomes are variables expected to be
related to the same confounder as the primary outcome but
unrelated to the exposure of interest (55). As such, a control
model can be developed to assess whether inclusion of the
confounder variable removes the association between the
exposure and negative control outcome, which would suggest
that the confounder variable is adequate to mitigate residual
confounding. High-dimensional data sets could also provide
more potential instrumental variables, which can allow ob-
servational studies to mimic randomized trials under certain
assumptions (90–94). Finally, machine learning methods are

being developed that may help reduce residual confounding
when applied appropriately (95–97). These approaches have
often performed comparably to or better than solely expert-
based propensity scores when appropriately validated against
randomized controlled trials and in simulations (95, 97–105).
Such methods can be robust to widely varying covariate sets
(97). However, these methods should be used with caution
due to their early stage of development and their potential
for worsening model bias and variance through data-driven
inclusion of mediator, collider, and/or instrumental variables
in models (96). Another limitation of machine learning–
assisted confounder adjustment is that the type and degree
of confounder adjustment achieved may be less interpretable.
Examination of the underlying variables included in partially
automated methods could yield some interpretability, but
this would be challenging with very high-dimensional and
ensemble methods (97). Altogether, big data provides an
opportunity to improve measurement and representation of
factors beyond diet, while machine learning could facilitate
the analysis of these high-dimensional data sets.

Improving disease prediction
Relatively few clinical or public health prediction models
include dietary data (106). Incorporation of such data into
predictive models could improve health outcome predic-
tions. Predictive models are distinct from most research in
nutritional epidemiology because they generally include all
variables thought to be relevant for prediction of an outcome,
are more concerned with the global prediction characteristics
of the model than individual exposure variables’ associations
(e.g., area under the receiving operator curve instead of
relative risk), and are less concerned with interpretability
(107). Prediction models for cardiovascular disease, one of
the major focuses of the science of diet, have been extensively
studied for the past 5 decades. Risk prediction tools, such as
the one originally developed from the Framingham study in
1967, are still commonly used in clinical practice to deter-
mine the need for hypertensive and cholesterol medications
(106). More recently, population-level models have been
developed that can be used to guide the implementation of
public health preventive interventions, inform policymakers
about future disease burden, and assess the impact of public
health actions (108–111). Typically, prediction models have
included very few dietary components (106); when these
are included, greatly simplified dietary factors are typically
used (e.g., only a small number of foods or nutrient ratios)
(108, 112). Reasons for excluding dietary variables from
current predictive models may include absence of dietary
data in many commonly used data sources, difficulty in their
collection, and limited or no added predictive performance
(e.g., due to high measurement error, use of oversimplified
dietary pattern scores, or inappropriate modeling methods).
Therefore, inclusion of rich dietary data in predictive models,
particularly together with the use of novel data collection
and machine learning methods, could be an important
and largely untapped avenue for improved performance. As
discussed previously, new measurement tools could mitigate
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measurement error and allow predictive models to take
advantage of relatively small associations. In addition, the use
of machine learning models could better leverage complex
dietary exposures, nonadditive relations, and nonlinear
associations to improve prediction models. A recent cohort
study supports this idea because it demonstrated synergistic
prediction performance improvements for cardiovascular
mortality when combining rich dietary data with machine
learning methods (78). A further advantage of applying the
machine learning paradigm is that cross-validation makes
many algorithms more resistant to the effects of multi-
collinearity in the context of prediction (82). Furthermore,
this internal validation could permit the identification of
dietary patterns and factors that are most relevant in specific
populations for prediction of specific diseases. Overall, both
novel data sources and machine learning methods offer
opportunities to improve chronic disease prediction models
through incorporation of rich dietary data.

Limitations of big data and machine learning in disease
prediction.
Notwithstanding the potential positive impacts on predictive
modeling, the application of big data and machine learning
has several potential pitfalls. First, selection bias and system-
atic measurement error in novel data sources are a concern
(55). If excluded from training data sets, vulnerable popula-
tions could be further marginalized by predictive algorithms
that are inaccurate for them. In addition, given that machine
learning methods are usually atheoretical and sometimes
inscrutable, they are vulnerable should some aspect of the
underlying data-generating process change. In that case, they
may unexpectedly become inaccurate, so researchers should
take steps to safeguard against this eventuality. Another
important consideration is that complex machine learning
models do not always improve prediction. They are more
flexible than most parametric regression models; however,
this makes them more susceptible to overfitting (15). Over-
fitting is error that can occur with more flexible models when
they fit too closely to the limited observed data points, which
may lead to worse performance on new data (i.e., fitting
to noise rather than signal) (113). Their relative advantage
depends on the importance of interactions and nonlinearity
for a given problem. Ideally, many machine learning and
statistical models should be trialed and evaluated using
cross-validation for a given prediction problem. Nonlinear
parametric statistical models such as fractional polynomials
and restricted cubic splines should also be considered (114,
115). A related issue with most machine learning approaches
is that they typically require more observations per variable
to make robust predictions (15). Therefore, it may often
not be appropriate to apply machine learning techniques
in smaller data sets. Alternatively, the numerous feature
selection and dimensionality reduction techniques in the
machine learning corpus can be used, along with domain
knowledge, to reduce the number of included variables.
Also, some supervised machine learning algorithms, such
as random forest, are relatively robust in the presence of

uninformative variables. In general, statistical techniques will
perform better and be more generalizable in situations in
which only a small sample size is available and both nonlinear
and nonadditive relations are not very influential. Finally,
it is important to note that modeling health outcomes is
distinct from the application domains in which machine
learning was originally developed (116). For example, in
most computer vision contexts there is a very high signal-
to-noise ratio. On the other hand, in medical domains a
significant proportion of prediction error likely comes from
unmodifiable stochasticity, posing a lower ceiling on possible
prediction accuracy. Thus, in health research, uncertainty
estimates and probability predictions are more important
than they often have been in machine learning. Although
not often done, uncertainty estimates can be derived for
machine learning analyses using resampling and Bayesian
approaches. Finally, in the health research context, it is
important to focus primarily on calibration as a predictive
performance metric, which entails the concordance between
predicted and observed probabilities across the full spectrum
of risk (81, 107). This contrasts with the more frequent
use of discriminative performance metrics such as area
under the receiver operator curve in machine learning
research.

Informing inferential studies
Although most machine learning and big data research
has focused on prediction or classification, it could also
help inform inferential studies in nutritional epidemiology.
First, if successful in mitigating nondifferential measurement
error and increasing sample sizes, new dietary measurement
methods could aid detection of smaller effect sizes and
reduce the effects of multicollinearity on coefficient stability
(7, 25). Furthermore, application of machine learning could
help with hypothesis generation, particularly as methods
for interpreting complex algorithms improve. Already, cur-
rent techniques such as permutation feature importance,
accumulated local effects, partial dependence plots, Shapley
values, local interpretable model-agnostic explanations, and
interaction h-statistics can be used with almost any machine
learning model to reveal the shape of relations between
predictors and outcomes, as well as important interactions
(117). In addition, dimensionality reduction and feature
selection techniques can be used to derive empirical dietary
patterns and predictive dietary factors for further study.
Given nutrition’s high level of complexity, these exploratory
approaches may be particularly helpful. Also, an advantage
of data-driven dietary patterns and variable selection is that
they may be more reflective of relevant dietary variation in
a local population than a priori scores developed elsewhere
(118). Furthermore, if the totality of dietary exposure data
is incorporated into an analysis with machine learning
techniques, including multiple food/nutrient classification
levels, there may be less temptation or possible explanations
for conducting selective analyses. This would not always be
advisable, because hypothesis-driven studies would require a
much more selective analysis, but could be a useful approach
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for exploratory studies. An additional consideration is that
big data and machine learning may enable more com-
prehensive and precise incorporation of confounders into
analysis, possibly reducing residual confounding. Finally,
greater availability of big data might allow more study of
meta-dietary factors such as timing of meals, preparation and
cooking methods, social aspects of dining, the location of
eating, and additional contextual factors (e.g., eating while
watching television).

Machine learning could also enhance observational stud-
ies that search for evidence of causal relations in nutritional
epidemiology, within a potential outcomes framework. New
ways of using machine learning to partially automate
generation of propensity scores and select confounders from
high-dimensional data have already been described (95,
96). In addition, targeted maximum likelihood estimation
(TMLE) can serve as an alternative to propensity score–
and G-computation–based causal effect estimation while
incorporating ensemble machine learning methods, such as
Super Learner (119). In concert with Super Learner, TMLE
has demonstrated less biased estimation of causal effects
than traditional approaches. The primary difference is the
use of the machine learning ensemble during a secondary
targeting phase to better balance the bias–variance trade-
off in estimation of the causal effect (120). As described
previously, an initial application of TMLE in nutritional
epidemiology found relations between fruit and vegetable
intake and pregnancy outcomes that were not uncovered by
logistic regression (61). The TMLE effect estimates were also
more precise.

Limitations of big data and machine learning for inferen-
tial studies.
Although big data and machine learning may be helpful for
informing inferential studies through both hypothesis gen-
eration and application within causal inference frameworks,
they are not enough for causal inference on their own. For
any experimental data, many causal models exist that could
explain observed relations (120). Therefore, experts’ domain
knowledge is essential for informing a priori causal models,
interpreting results generated by algorithms, and putting
findings into the wider evidence context. In particular,
although big data may provide additional opportunities
to control for unmeasured confounders, use negative con-
trols, and find instrumental variables, without adequate
forethought it also poses a higher risk of biasing effect
estimates and masking direct effects through unintended
inclusion of collider and mediator variables in models (96).
Further issues when using big data and machine learning
to inform evidence for causal relations are selection bias
and systematic measurement error. Both must be better
understood to ensure valid and generalizable results. Last,
feature selection techniques should be used in this context
with caution. If these techniques are used to specify a final
model, particularly if the outcome variable was used during
feature selection, there is a high risk of inaccurate inferences.

Conclusions
Overall, greater use of big data and machine learning
could help improve the reliability and validity of nutritional
epidemiologic findings. Specifically, the incorporation of big
data and machine learning into epidemiologic analyses could
enable reduced measurement error, better representation of
the complexity of diet and its confounders, and improved
consideration of intricate relations between diet and disease.
In turn, such improvements could help improve both
predictions and inferences regarding the relations between
diet and disease. With increased use of big data and machine
learning, some challenges facing nutritional epidemiology
could potentially be addressed.
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